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Thermal Conductivity of Inhomogeneous Materials 
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The effective thermal conductivity is calculated from the rate of entropy produc- 
tion per unit volume. Thermal conductivity and the temperature field are 
expressed in terms of Fourier components and these are related. The rate of 
entropy production is then obtained in terms of the volume-averaged thermal 
conductivity and the Fourier components of thermal conductivity. A simple 
expression for the effective thermal conductivity is found. In the case of stria- 
tions it leads to well-known results. The formalism is applied to solids with 
inhomogeneously distributed solutes. It is shown that the thermal conductivity 
is less than the volume-averaged thermal conductivity and that homogenization 
by diffusion increases the thermal conductivity. Similar results would apply to 
the electrical conductivity of inhomogeneous alloys. 
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1. I N T R O D U C T I O N  

The effective thermal  conduct ivi ty  of an inhomogeneous  solid, consist ing of 

a mixture of materials of differing conductivities, is a problem which has 

not  been solved in general, even though there are a variety of partial  solu- 
tions, each suitable in a part icular  situation. A brief review of these various 

methods has been given by Par ro t t  and  Stuckes [1] .  The present t reatment  

cannot  claim to be a general solut ion but  is best suited to cases where the 
conduct ivi ty  is a funct ion of position, but  the change with posi t ion is a 

smooth  one, so that the thermal  conduct ivi ty  can be expressed as a Four ier  
series. 
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The overall or effective thermal conductivity can be expressed in terms 
of the rate of entropy production in a temperature gradient. In the case 
when the thermal conductivity K is constant, the rate of entropy produc- 
tion per unit volume is given by 

d S K  
-~-= ~-5 IVT[ 2 (1) 

where T is the absolute temperature. 
In a material with inhomogeneous thermal conductivity the tem- 

perature gradient also varies with position. However, in terms of the 
average temperature gradient (VT)o the rate of entropy production, 
averaged over a large volume, still defines an effective thermal conductivity 
K~ through the relation 

= K~ IVTI 2 (2) 

It is assumed that the thermal conductivity K(r), a function of position 
r, can be expressed as a Fourier series about the volume-averaged value 
Ko, so that 

K(r) = K o + ~ K(k )e  i k r  (3) 
k 

The temperature field will be obtained from the equation of heat con- 
duction in terms of the components K(k), and the rate of entropy produc- 
tion and effective thermal conductivity will likewise be expressed in terms 
of these components. The effective thermal conductivity will have a simple 
form; see Eq. (13) below. It will be seen that K~ cannot exeed the volume 
average Ko. Some simple cases are discussed. 

2. TEMPERATURE FIELD 

As a result of the inhomogeneous nature of K(r), the temperature 
gradient is also inhomogeneous. Let the temperature field be of the form 

T = r  .VT0+ ~ T(q)e iqr (4) 
q 

so that 

grad T= VT o + i ~ qT(q)e iqr  (5) 
q 
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The components T(q) and K(k) are related by the equation of heat condi- 
tion, 

div K(r) grad T=  0 (6) 
From Eqs. (3) and (5) 

Kgrad T=  -K0 VTo + iKo ~ qT(q)e iqr  
q 

+VTo~"K(k)eikr+i~" qK(k) T(q)e i~k+")~ (7) 
k q,k 

Therefore 

div K(r) grad T= - Ko ~ q2T(q)eiqr 
q 

+ i ~  (VTo.k) K(k)e~k r--~ q - ( k + q ) K ( k )  T(q)e i<k§ (8) 
k k,q 

In the first iteration one can disregard the nonlinear term in K(k)T(q). 
Equating each Fourier component separately to zero and writing q-VT 0 = 
q IVTol cos 0, one obtains 

T(q) = ilVTol cos O(Koq) -1 K(q) (9) 

This relates the fluctuations in the temperature field to the spatial varia- 
tions in the thermal conductivity. The neglect of the nonlinear terms can 
now be justified. If this iteration is substituted into Eq. (8) and one then 
integrates over space, the only contributions to the double sum come from 
terms such that k + q = 0, so that q-(k + q)=  0. Hence not only are non- 
linear terms of second order in [VTol, but also they vanish in a spatial 
average. 

3. EFFECTIVE THERMAL CONDUCTIVITY 

To obtain the effective thermal conductivity from Eq. (2), one must 
integrate grad T.K(r) grad T over unit volume. Using Eq. (5) for grad T 
and Eq. (3) for K(r), and then integrating, 

(grad T. K(r) grad T~ 

= Ko(VTo) 2 + ~ {Koq2T(q) T(-q) + 2iq-VT 0 T(q) K ( - q )  

�9 VToKo f e i""  T(q)dr + (VTo) 2 f e iqr K(q)dr} + 2iq 

(q.q')  T(q) T(-q')K(k)fei<q+k-"')rdr (10) 
q,q',k 
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The last term is of third order in IVTol and is neglected. The fourth and 
fifth terms vanish on integration over r. Using Eq. (9) 

cos 2 0 K 
2iq.VToT(q)K(-q)=-2(VTo)2--~o (q) K ( - q )  ( l l a )  

VZ 2 COS2 0 
Koq2T(q) T ( - q ) = (  o) --k-~o K ( q ) K ( - q )  ( l l b )  

so that 

(grad T. K(r) grad T) = Ko(VTo) 2 (VT~ ~ cos 2 0K(q) K(-q)  (12) 
Ko q 

By comparison with Eq. (2) one finally obtains the effective thermal 
conductivity, 

_12 Ke : Ko Ko q K(q) K(-q) c~ 0 (13) 

where cos 0 is the direction cosine of q with respect to the overall tem- 
perature gradient. 

It is of interest to note that the effective thermal conductivity K~ is 
always less than the volume-averaged conductivity Ko. The only exception 
occurs when cos 0 = 0 for all significant Fourier components of K(r), i.e., 
when the inhomogeneities have cylindrical symmetry and are in the plane 
normal to the temperature gradient. In that special case one can add all 
heat currents so that K~ = Ko. 

4. STRIATIONS 

In this case all significant Fourier components of K(r) point in the 
same direction, so that all values of cos 0 are the same, and K(r) is 
constant over all planes normal to one direction in space. In the case 
when cos 0 = 0, Ke = Ko, as before. In the opposite case, when cos 0 = 1, 
one must average the thermal resistivity over volume. One can readily 
show that Ke is less than Ko, so that 

where 

Ke=Ko- AK (14) 

1 
A K = ~  X I k ) X ( - k )  

since all values of k lie in one direction. 

(15) 
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If the direction of the temperature gradient makes an angle 0 with the 
direction normal to the striation planes, 

Kr = K o - AKcos 2 0 (16) 

5. I N H O M O G E N E O U S  SOLUTE DISTRIBUTION 

Solutes depress the thermal conductivity of solids. The variation of 
thermal conductivity with solute content c for a small change 6c is thus of 
the form 

6K= -ilK(c) ~5c (17) 

In the case of metals and dilute alloys 

fl ~ 100(300/T) (18a) 

where T is the absolute temperature. In the case of mixed dielectric crystals, 

/3 ~ 30(300/T) 1/2 (18b) 

In the case of concentrated alloys, where the thermal conductivity is partly 
electronic and partly due to lattice waves, 13 is intermediate between fl ~ lie 
and the value of Eq. (18b). In these equations c is the fraction of solutes per 
atom [2].  

If one can express the spatial variation of solute content about an 
average value Co in terms of a Fourier expansion, 

c(r) - c o = ~ c(k)e ik" (19) 
k 

then K(k) of Eq. (3) becomes 

X(k) = -flKoc(k ) (20) 

A case of interest is when c(r) is a function of radial distance r only; 
this corresponds to solute clusters of spherical symmetry such that there is 
no correlation in the position of neighboring clusters. In this case c(k) is 
independent of the direction of k. For a domain of unit volume, now taken 
as a sphere of radius R = ( 4 / t / 3 )  - i / 3 ,  

and 

c(k) = f~ c(r)(2rt/k)r sin(kr) dr (21) 

Y' c(k) c ( - k )  = f~,~/l~ (2rc)-34rck2[c(k)] 2 dk (22) 
k 
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This formalism is particularly suited to treat homogenization of the 
solute content by' diffusion. Let the diffusion coefficient for the solutes at 
the temperature of homogenization be D, and  let that temperature be 
applied for a time t. Diffusion reduces each Fourier component according 
to 

c(k) = - k 2 D c ( k )  (23) 

so that, treating c(k) as function of t with an initial value c(k, 0), 

c(k, t) = c(k, O)e-~2~ (24) 

Diffusion will remove all Fourier components with k > (Dt)  t/2. The effec- 
tive thermal conductivity, using Eqs. (13) and (20), can be written as 

Ke=Ko[1-fl2~c(k)c(-k)] (25) 
k 

so that inhomogeneities reduce the thermal conductivity. Diffusion, by 
reducing the contribution of higher Fourier components, will thus increase 
the thermal conductivity, provided of course that no additional solutes or 
impurities are introduced into the solid'while it is being heated. Thus, for 
solute clusters of spherical symmetry, diffusion effectively reduces the upper 
limit of integration in Eq. (22) to k = (Dt)-t /2.  

Consider, for example, an alloy containing N cluster per unit volume, 
each having a solute concentration 

c(r) = ro/r (26) 

so that, for one cluster in unit volume, according to Eq. (21), 

c(k) = 2nro/k 2 (27) 

Thus for a single cluster according to Eq. (22), 

E c ( k ) c ( - k ) = 2 r  2 kmin km (28) 
k ax 

For N clusters per unit volume, if their relative position is not correlated, 

c(k) c ( -  k)--2rZN[21rN -1 /3 -  1/kmax] (29) 
k 
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If the material was not homogeneized, 1/kma x = 0. After homogenization for 
a time t with a diffusion coefficient D, 1/kma x = (Dt)  m and 

c(k) c ( - k )  = 2r2 N [  2 ~ N  1/3 _ ( D t  ) l/2 ] (30) 
k 

Now let /~2 = 1 x 104, ro = 1 x 10 -7 cm, and N =  1012 cm-3, then from 
Eqs. (30) and (25), 

A K =  K o - K~ = 0.04Ko (31) 

provided no diffusion had occurred. It would require homogenization for a 
time such that (Dt)  1/2 was about 6 x 10 -4 cm to reduce A K  to zero. 

Longer annealing would make (Dt)  m larger than 1/kmin,  and expres- 
sion (29) would be zero. 

The~crition for effective homogenization, that 

(Dt)  1/2 > ~ N  1/3 (32) 

does of course also follow from the need that the distance of diffusion 
should exceed the average separation between clusters. 

6. S U M M A R Y  

By expressing the variations of the thermal conductivity in Fourier 
components, a simple expression was obtained for the effective thermal 
conductivity. This effective value is usually less than the volume average of 
the thermal conductivity and cannot exceed it. The formalism is well suited 
to cases when inhomogeneous solute distributions cause inhomogeneities in 
the thermal conductivity, especially since changes due to diffusion can be 
represented simply in terms of Fourier components. 

While this paper addressed itself explicitly to thermal conductivity, the 
same method can also be used for the effects of inhomogeneity on electrical 
conductivity. 
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